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Abstract 

We revisit some properties of circulant matrices regarding them as objects 
generated by the action of the dihedral group on complex vectors. 

1. Introduction 

As it is well known, a circulant matrix is a square matrix, whose 
successive rows are obtained by cyclic permutations of the first one. This 
type of matrices has been studied for quite a long time [1, 3, 4], and their 
properties have been used in the controllability of systems of differential 
equations [2], among other different applications. What we do here is to 
go over these properties looking at circulant matrices as objects generated 
by the action of the dihedral group over complex vectors. 
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To formalize this study, let n∑  represent the symmetric group of 

permutations of n objects, given a permutation n∑∈σ  and an                

n-dimensional complex vector ( ) ,,,, 21
n

naaau C∈= …  we define 

( ).,,,: 21 naaau σσσ=σ …  

It can be easily seen that this action of n∑  on nC  has the following 

properties: 

If ,,and,,, CC ∈µλ∈∑∈σ n
n vu  

(a) ( ) ( ) ( ).vuvu σµ+σλ=µ+λσ  

(b) ,vuvu •=σ•σ  where vu •  stands for the following matrix 
product: 

If ( ) ( ),,,,,,,, 2121 nn bbbvaaau …… ==  

( ) .,,,
1

2

1

21 kk

n

k
n

n ba

b

b
b

aaavu ∑
=

=



















⋅=•
#

…  

(c) .1vuvu −σ•=•σ  

Let n∆  (the dihedral group) be the subgroup of n∑  generated by the 

n-cycle ( )2,,1,,1: …−=ρ nn  and the symmetry ( ).,: 1 kjnkj∏ +=+
=σ  

From a geometric perspective, ρ  acts over an n-vertex regular polygon as 

a right-rotation of angle ,2
n
π  while σ  commutes the vertices 1 and 2,n  

and ,1−n  and so on. Thus, 

{ } { },,,,,,,,,: 1212 σρσρρσσρρρ=∆ −− nn
n …∪…1  

and we list some equalities, which will be used later 

( ) ( ) .10,,;,,3,2,1 11 −≤≤σρ=σρσρ=σρ=ρ −−− nkn knkkk…  
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Using this terminology, if ( ) ,,,, 21
n

naaau C∈= …  the circulant 

matrix generated by u is 

,:
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and we shall represent uC  in either of these two ways. 

By rows 
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By columns 

( ) ( ) ( ) ( )( ),,,,,: 12 ttntt
u uuuuC σσρσρρσ= −…  

where tv  stands for the column obtained by transposing the row v. 

Given ( ) ( ) ,,and,,,,,,,, 2121 CC ∈µλ∈== n
nn bbbvaaau ……  

the following properties are straightforward: 

(1) .vuvu CCC µ+λ=µ+λ  

(2) ,wvu CCC =⋅  where ( ).,,,, 12 vuvuvuvuw n σ•σρ•σρ•ρσ•= −…  

(3) .uvvu CCCC ⋅=⋅  

That is, the set of all circulant matrices forms a commutative 
subalgebra of the ( )nn ×  complex matrices. To justify our notation, let us 

do some calculations 
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( ) ( ) nkj
jk

nkj
kj uvuv ≤≤
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− •σρρ=σρ•ρ= ,1
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1  

( ) ( ) nkj
jk

nkj
jnk uvuv ≤≤

+−
≤≤

+− •σρ=•σρρ= ,1
1

,1
1  

( ) .,1
1

vuwnkj
jk CCCvu ⋅==σρ•= ≤≤
+−  

2. Diagonalization of Circulant Matrices 

Making use of our dihedral notation, we show that every circulant 
matrix is diagonalizable over the field of complex numbers, whereas, in 
the real case, in order to be diagonalizable the circulant matrix needs to 
be symmetric. 

Let nie π=ω 2:  be the complex n-th root of unity. For ( ,, 21 aau =  

) ,, n
na C∈…  we introduce the complex polynomial 

( ) ,: 12
321

−++++= n
nzazazaazP …  

and the complex vectors 

( ( ) ( ) ( ) ) .1,,,,,1 11121 nkv knkk
k ≤≤ωωω= −−−− …  

Noticing that 

( ) ( ) ,,1,11 nkjPvu kkj
k

j ≤≤ωω=•ρ −−  

we have that 

( ) .1,1 nkvPvC t
k

kt
ku ≤≤ω=⋅ −  

Hence, since the vectors nvvv ,,, 21 …  are linearly independent, it follows 

that uC  is diagonalizable over ,C  with the eigenvalues being 
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( ) ( ) ( ).,,,1 1−ωω nPPP …  

In the real case, the situation is different. Just notice that the ( )33 ×  

circulant matrix generated by the real vector (1, 2, 3) has ( ) ( λ+λ−λ 36 2  
)3+  as characteristic polynomial and, since the second factor of this 

polynomial is irreducible in ,R  the matrix ( )3,2,1C  is not diagonalizable 

over the reals. 

The following proposition provides with a necessary and sufficient 
condition so that a real circulant matrix be diagonalizable over .R  

Proposition. If ( ) ,,,, 21
n

naaau R∈= …  then the following 

assertions are equivalent: 

(i) ( ) ( ) ( )12 ,,, −ωωω nPPP …  are all real numbers. 

(ii) The circulant matrix uC  is symmetric. 

(iii) uC  is diagonalizable over .R  

Proof. (i) ⇒  (ii): For ,1,,2,1 −= nk …  from 

( ) ( ) ( ) ( ( ) ),1−ω=ω=ω=ω nkkkk PPPP  

we obtain 

( ) ( ) ( ) ( ) .02
2132 =ω−++ω−+− −

−
nk

n
k

nn aaaaaa …  

Hence, we have the following system of equalities: 
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Since the Vandermonde ( )  tdeterminan-1−n of the above system is 

nonzero, we deduce that 
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.,, 132 …−== nn aaaa  

Thus 

( ) ( ) ( ) .,,,,,,,,, 212111 uaaaaaaaaau nnnn ===ρ=ρσ − ………  

Consequently, for ,,,2,1 nj …=  

,11 uuu jjj −− ρ=ρσρ=σρ  

which, working by columns, leads us to 

( ) ( )( )tnttt
u uuuC 1,,, −ρρ= …  

( ) ( ) ( ) ( )( ) .,,,, 12
u

ttntt Cuuuu =σσρσρρσ= −…  

Given that (ii) ⇒  (iii) is evident, we show that (iii) ⇒  (i). 

If uC  is diagonalizable over ,R  its characteristic polynomial admits n 

linear factors of real coefficients. From the complex case, we know that 
this polynomial is 

( )( ) ( )( ) ( ( )),1 1−ω−λ⋅⋅ω−λ⋅−λ nPPP …  

clearly then, the values 

( ) ( ) ( )1,,,1 −ωω nPPP …  

must all be real numbers. 

 

3. Inversion of Circulant Matrices 

From the diagonalization study done above, it is easily seen that, for 

=u  ( ) ,,,, 21
n

naaa C∈…  the circulant matrix uC  is invertible, if and 

only if none of the values ( ) ( ) ( )1,,,1 −ωω nPPP …  is zero, i.e., when the 

polynomials ( )xP  and 1−nx  have no common divisors in .C  
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Let uC  be an invertible circulant matrix. To see that the inverse 

matrix 1−
uC  is also circulant, just recall that, if neee ,,, 21 …  denote the 

unit vectors of ,nC  then 

{ }neee CCC ,,, 21 …  

is a cyclic multiplication group generated by 2eC  and it can be easily seen 

that, for a square matrix MM ,  is circulant, if and only if 

.22 MCCM ee ⋅=⋅  Therefore, since ,nn euue CCCC ⋅=⋅  we have that 

,111111
22

−−−−−− ⋅=⋅=⋅=⋅ ueueeueu CCCCCCCC
nn

 

i.e., 1−
uC  is also circulant. Hence, the invertible circulant matrices form a 

commutative multiplication group. To calculate ,1−
uC  let V be the 

Vandermonde matrix obtained by arranging the before defined vectors 
,1, nkvk ≤≤  in columns. Then, since ( ( ) ( ) ,,,1diag …ω⋅= PPVCu  

( )) ,11 −− ⋅ω VP n  we have 

( ( ) ( ) ( )
) ,1,,1,1

1diag 1
1

1
unu CV

PPPVC ′
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⋅= …  
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